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Parallel flow in Hele-Shaw cells with ferrofluids
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Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to
the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which
fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude distur-
bances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a
ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize
the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of
wave propogation for a given wave number. We note that the magnetic field creates an effective interaction
between the solitons.

PACS numbgs): 75.50.Mm, 75.70.Kw, 68.18:p, 05.45.Yv

The Saffman-Taylor problenil] considers two immis- nal field, the usual frontal displacement, viscous fingering
cible viscous fluids moving in a narrow space between twdnstability is supplemented by a magnetic fluid instabil&y,
parallel platesthe so-called Hele-Shaw cellwhen a low resulting in a variety of new interfacial behaviors. Depending
viscosity fluid invades a region filled with high viscosity on the applied field direction, one observes highly branched,
fluid, the initially flat fluid-fluid interface is unstable and labyrinthine structure47,8], patterns showing an ordered
evolves through a mechanism known as viscous fingerinéﬂ_”e of peakq 9], or even the supression of the usual viscous
[2]. We call the displacement of one fluid by anotfrental ~ fingering instability [10]. Rosensweig[6] discusses the
flow. In contrast,parallel flow occurs when the fluids flow Kelvin-Helmholtz instability for unconfined ferrofluids.
parallel to the interface separating them. One important ex- [N this paper we perform the linear stability analysis for
ample of parallel flow occurs after the passage of a fu"yparal!el row.m which one'ﬂwd is a ferrofluid anq a magnetic
developed Saffman-Taylor finger. field is applied. We consider three separate field configura-

Recent experimental and theoretical studi@s5] exam-  tions: (Q) tangential for m-plane_ fields tangent to _the unper-
ined the dynamics of fluid interfaces under parallel flow inturbed interface(b) normal for in-plane applied fields nor-
Hele-Shaw cells. Zeybek and Yorts§8,4] studied, both ~Mal to the unperturbed interfac) perpendicular when the
theoretically and experimentally, parallel flow in a horizontal field is perpendicular to the plane defined by the Hele-Shaw
Hele-Shaw cell in the large capillary-number limit. For finite Cell plates. We show the magnetic field provides additional
capillary number and wavelength, linear stability analysis in-mechanisms for destabilizing the interface, and we analyze
dicates that small perturbations decay, but the rate of decagualltatl_vely the interactions _betvx_/een solitons caused by the
vanished in the limit of large capillary numbers and largeMagnetic field. We neglect inertial terms because they are
wavelength. Furthermore, a weakly nonlinear analysis of thé0t needed to understand the interfacial instability.

problem found Korteweg—de Vrig&dV) dynamics leading Let us briefly describe the physical system of interest.
to stable, finite amplitude soliton solutions. Solitons wereConsider two semi-infinite immiscible viscous fluids, flow-
indeed observed experimentally. Gondret and Ralpglish- ~ INg with velocitiesU; and U,, along thex direction, in a

corporated inertial terms into the equation of motion in aHele-Shaw cell of thickneds (see Fig. 1. We assume thai
Hele-Shaw cell and found a Kelvin-Helmholtz instability for iS Smaller than any other length scale in the problem, and
inviscid fluids. For viscous fluids they derived a Kelvin- therefore the system is considered to be effectively two-
Helmholtz-Darcy equation and found the threshold for insta-
bility was governed by inertial effects, while the wave veloc-
ity was governed by Darcy’s law flow of viscous fluids.
Their experimental results supported their theoretical analy-
sis.

B P M,
| UZ

As was the case for frontal flow of nonmagnetic fluids in P LN
Hele-Shaw cells, many research groups have studied the © X
frontal interface behavior when one of the fluids is a ferrof-
luid [6], and an external magnetic field is appligg-10]. U P
Ferrofluids, which are colloidal suspensions of microscopic i

permanent magnets, respond paramagnetically to applied
fields. As a result of the ferrofluid interaction with the exter- FIG. 1. Schematic configuration of the parallel flow geometry.
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dimensional. Denote the densities and viscosities of th@enotes the infinitesimal area element. The Veaforepre_

lower and upper fluids, respectively ag, 7, andp,,7,. To

sents the unit normal to the magnetic domain in consider-

achieve steady-state parallel flow the velocities and viscosigtion.

ties must obey the conditiom,U;= 7,U,. According to
Gondret and Rabaud], we may neglect inertial terms rela-
tive to viscous terms providekb<12/Re, where is a typi-
cal wave vector and RepUb/7 is a characteristic Rey-
nold’s number.

Between the two fluids there exists a surface tension
We assume that the lower fluid is the ferrofldidagnetiza-

tion M), while the upper fluid is nonmagnetic. In order to

include the acceleration of graviﬁl, we tilt the cell so that
the y axis lies at angle8 from the vertical direction. To

include magnetic forces, we apply a uniform magnetic field

ﬁo, which may point along the, y, or z axis. During the

flow, the fluid-fluid interface has a perturbed shape described

asy={(x,t) (solid curve in Fig. L

Hydrodynamics of ferrofluids departs from the usual
Navier-Stokes equations through the inclusion of a term rep

resenting magnetic force. L&l represent the local magne-
tization of the ferrofluid, and note that the force bh de-
pends on the gradient of the local magnetic fidldThe local
field differs from the applied fieldi, by the demagnetizing
field of the polarized ferrofluid. We will assunid takes a

To study the interface dynamics, we evaluate @g.for
each of the fluids on the interface, subtract the resulting
equations from each other, and divide by the sum of the two

fluids’ viscosities to get the equation of motion
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To obtain Eq.(3) we have used the pressure boundary con-
dition p,—p;=0o« at the interface, where=(%/9x?)[ 1
T (a£19x)?] %2 denotes the interfacial curvature in the plane
of the Hele-Shaw cell. The dimensionless parameier
=(n,— 1)/ (7m>2+ n4) is the viscosity contrast.

We perturb the interface with a single Fourier mode

() =¢cexdi(wt—kx)]. (4)

constant value parallel to the applied field. This amounts torhe velocity potential for fluid,#;, must contain the uni-
neglecting the demagnetizing field relative to the applieckorm unperturbed flowJ; and a perturbed part that reflects

field and can be justified for low magnetic susceptibility of

the space and time dependence/pbbeys Laplace’s equa-

the ferrofluid, or for large applied fields that saturate thetion V2¢4,=0 and vanishes ag— * . The velocity poten-

ferrofluid magnetization. It can also be justified for very thin
ferrofluid films when the field is parallel to the plane of the
cell.

tials obeying these requirements are

b= dic exp( = |kly)exfi(wt—kx)] - Ux. ®)

For the quasi-two-dimensional geometry of a Hele-Shaw o
cell, the three-dimensional flow may be replaced with an To conclude our derivation and close E§) we need

equivalent two-dimensional flov\7(x,y) by averaging over additional relations e_xpressin_g the veIo_city potentials in
the z direction perpendicular to the plane of the Hele-Shawterms of the perturbation amplitudes. To find these, we con-
cell. Imposing no-slip boundary conditions and a parabolics'dered the kinematic boundary cor_1d|t|0n, W_hlch state's that
velocity profile one derives Darcy’s law for ferrofluids in a the normal components of each fluid’s velocity at the inter-

Hele-Shaw cel(11,12,

7

where p is the hydrodynamic pressure. Equati¢h) de-
scribes nonmagnetic fluids by simply dropping the terms in
volving magnetization.

When the velocity fieldv is irrotational, it is convenient
to rewrite Eqg.(1) in terms of velocity potentials. We write

v= —§¢, where ¢ defines the velocity potential. Likewise
we introduce the scalar magnetic potential

)

where H=—V¢. Here the unprimed coordinatesdenote

arbitrary points in space. The primed coordinatésare in-
tegration variables within the magnetic domainandd?r’

b2
12

1 (+b/2

™= ~o] . (M-V)Hdz=p(g-y)y(. (D)
—b/2

M-n’

r=r’]

d?r’,

)

face equals the normal velocity of the interface it$él8].
Inserting expressiot¥) for £(x,t) and Eq.(5) for ¢ into the
kinematic boundary condition, we solved fek,(t) consis-
tently to first order in{ to find

iwg’k ) k

¢1k:_W+|mU1§kr (6)

and a similar expression fap,, .

Substitute expressiof6) for ¢, and the related expres-
sion for ¢, into the equation of motioi3), and again keep
only linear terms in the perturbation amplitude. This proce-
dure eliminates the velocity potentials from Eg), and we
obtain the dispersion relation for growth of the perturbation

Z(x.1),
_ ( mUgt 772U2)
o=k
it 72
—(kob)?] ()

where Ng=2M?b/ o is the magnetic bond number athg
=\[(p1—p2)g cosplo.

i|k|lo
125+ 1,

)[Nslj(k)—(kb)2
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The real part ofw is k times the phase velocity and is the 10;* k (b)
viscosity-weighted average of the two fluid velocities. Note ( )
that the magnetic field does not alter the phase velocity of the 5 (c)
waves. The imaginary part af, which governs the exponen- [
tial growth or decay of the wave amplitude, does include 0 kb
effects of the magnetic field. Exponentiainstable growth 5
occurs when the imaginary part af is negative. We point i (a)
out that when there is no applied magnetic fighsE0) our

Eq. (7) agrees with the dispersion relation derived by Gon- 0 1 2 3 4 s
dret and Rabaufb] for the case in which the cell is vertical g1 2. variation ofl;(k) as a function okb for (a) tangential,

(B=0) and by Zeybek and Yortsds8,4] for the case in () normal, and(c) perpendicular magnetic field configurations.
which the cell is horizontal 8= /2).

Terms containing ;(k) originate from the Fourier trans- and
forms of

(19

* 1 1
+b/2 k)= i - ————Id
2| (X)_ bf J&r (8) |z( ) 4J'0 SI ’T|: r ’—(kb/2)2+7-2 T
j

b/2

. I e In the limits of small and large wave vectors these Fourier
the magnetic contribution to Eq(3). The subscriptj transforms reduce to

=X,Y,z indicates the tangential, normal, and perpendicular
magnetic field configurations, respectively. Mbrin thex or —[(3/2—=C+In2)—Inkb](kb)?, kb<1
y direction we can expand EB) to first order in to obtain k)~

—akb, kb>1,
a(x) | 1o
X(X)_f dx (x=x")| == "= F(x=x)  (9) o _[[(2-CHn2)~Inkb](by?r2,  Kbe1
Y= b, ko1, 17
and
" B [(1-C+In2)—Inkb](kb)?/2, kb<1
ly(x)= fﬁxdx'[ax)—§<x')]F<x—x'>, (10 L0~ kb2, kbs-1, (19
where where C~0.577 21 denotes Euler's constdr3]. Our re-
sults Eqgs.(13), (14), and (15), agree with similar kinds of
1 [+b/2 [+Db2 dzd7 calculations related térontal displacements in a Hele-Shaw
)= Bf f — % cell with ferrofluids[7-10!.
b2 [x*+(2—2")?] The dispersion relatio(¥) is given for the case of systems
2 with infinite extent along the axis. For finite extent. the
= _2 ‘/ b2+ x2— —[x|1. (11) algebraic dependence on wave vedtd modified by a first-
bx

order rational function of sirki as shown by Zeybek and
Yortsos[3,4]. WhenkL is large this finite size correction
dies off exponentially quickly. The magnetic integrajék)
likewise possess exponentially small finite size corrections.
Consider the stability of the fluid-fluid interface for the
different field configurations. The initially flat interface is

In contrast, forl ,(x) the z integration inverts the derivative
of ¢ with respect tazin Eq. (8) so that after integrating over
y' and expanding to first order in powers 6f this term
simplifies to

- > 1 1 unstable to perturbations with wave numbé&r when
|z(X):f dx'— - NBIj(k)—(kb)z—(kob)2 is positive. If the heavier fluid is
—= Bl (x=x)%  J(x=x")%+Db? below the lighter fluid p,>p,), then both gravity and sur-

N face tension stabilize the system dagis real. Therefore, in

XL =E()]. (12 the absence of applied magnetic fieNg=0), the temporal

We obtain the specific forms fdr(k) corresponding to growth rate of any perturbation is negative and waves are
each particular field configuration by taking the Fourierd@mped. On the other hand, if the external magnetic field is
transform of Eqs(9), (10), and(12). After some simple al- nonzerq th(_a stap|llty of .the interface will depend_on the
gebra we find the following expressions for the magnetic f|eld s direction. Figure 2 illustrates how the magnetic terms
terms!;(K): (13), (14), and (15) vary with reduced wave numbésb.

Inspecting Fig. 2 and the imaginary part of the dispersion
relation (7) we note that a tangent field configuration

I (K)= —ZJ ( )[\/ kb)?+*—7]d7,  (13)  [I,(k)<0], makes the growth rate even more negative than
when the field is absent. So a tangent external field has a
stabilizing nature, reinforcing the effects of gravity and sur-

(k) =4 f (ﬂ) [V(Kb2)2+ 72— r]d7,  (14) face tensiqn. In contrast, _sint;(k) andl,(k) are bqth pqsi-
o\ T tive quantities, if a sufficiently strong magnetic field is ap-
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plied normal to the fluid-fluid interface, or perpendicular to actual profile in unscaled coordinates may be either positive

the cell plates, the growth rate may become positive, leadingr negative, and the dipole moment given here must be di-

to a possible destabilization of the interface. We concludesided by the position and height rescaling factors to yield the

that the magnetic field can destabilize the interface even ifrue moment. True dipole moments point parallel to the

the abseﬂ?e of |nert_|al effects. I . magnetizationM when the soliton consists of excess mag-
In addition to the interface stability issue discussed above, . _ o : .

it is interesting to ask how the magnetic field acts on the'€tic fluid, and point opposite #dl when the soliton consists

motion of interfacial waves once they appear. In the follow-°f Missing magnetic fluid. .

ing, we discuss the action of the applied magnetic field on Dipole interactions are long ranged, falling off ag’Lfor

the solitons that appear in parallel flow in Hele-Shaw cellsmoments separated by a distanceThis contrasts with the

To treat the prob|em rigor0u5|y would require reproducingﬂuid-dynamic interaction of solitons that decayS exponen-

the analysis of Zeybek and Yorts@3,4] that derived Airy tially with separation. An interesting additional feature of the

and KdV equations from a weakly nonlinear analysis of thedipole-dipole interaction is its variation with the relative ori-

interfacial perturbations. Here we simply point out that theentation of dipole moments and the vector joining them. In

solitons may be considered as localized perturbations on thge case of solitons with parallel moments and m, dis-

flat interface. When magnetic fields are present the solitongjaced from each other along thexis, the interactions will

acquire net dipole moments equal to the magnetization of thgg attracting, with strengthré; m,, when the magnetizations

fluid multiplied by Fhe integrated area of the soliton. lie along thex axis (tangential but will be repelling, with
Take the generic form of a KdV soliton, strengthm; m, when the magnetizations lie along thénor-
c c mal) or z (perpendicularaxes.
u(x,t)=——secr(—(x—ct)), (19 In conclusion, we have performed the linear stability
2 2 analysis for parallel flow in a Hele-Shaw cell when one of

{he fluids is a ferrofluid. We show that the magnetic field
may provide a new mechanism for destabilizing the interface
fin the absence of inertial effects, and we determine the mag-
netic correction to the dispersion relations for three distinct
field orientations. Finally, we suggest parallel flow of ferrof-

© . luids as a novel system in which to investigate soliton inter-

mo)= [ Wueonax=—orM. (20 actions.
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written here in terms of the scaled time, position and heigh
variables discussed i], wherec is the speed of propoga-
tion. We define the scaled dipole moment of the soliton o
speedc as
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