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Parallel flow in Hele-Shaw cells with ferrofluids
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Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to
the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which
fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude distur-
bances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a
ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize
the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of
wave propogation for a given wave number. We note that the magnetic field creates an effective interaction
between the solitons.

PACS number~s!: 75.50.Mm, 75.70.Kw, 68.18.1p, 05.45.Yv
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The Saffman-Taylor problem@1# considers two immis-
cible viscous fluids moving in a narrow space between t
parallel plates~the so-called Hele-Shaw cell!. When a low
viscosity fluid invades a region filled with high viscosi
fluid, the initially flat fluid-fluid interface is unstable an
evolves through a mechanism known as viscous finge
@2#. We call the displacement of one fluid by anotherfrontal
flow. In contrast,parallel flow occurs when the fluids flow
parallel to the interface separating them. One important
ample of parallel flow occurs after the passage of a fu
developed Saffman-Taylor finger.

Recent experimental and theoretical studies@3–5# exam-
ined the dynamics of fluid interfaces under parallel flow
Hele-Shaw cells. Zeybek and Yortsos@3,4# studied, both
theoretically and experimentally, parallel flow in a horizon
Hele-Shaw cell in the large capillary-number limit. For fini
capillary number and wavelength, linear stability analysis
dicates that small perturbations decay, but the rate of de
vanished in the limit of large capillary numbers and lar
wavelength. Furthermore, a weakly nonlinear analysis of
problem found Korteweg–de Vries~KdV! dynamics leading
to stable, finite amplitude soliton solutions. Solitons we
indeed observed experimentally. Gondret and Rabaud@5# in-
corporated inertial terms into the equation of motion in
Hele-Shaw cell and found a Kelvin-Helmholtz instability fo
inviscid fluids. For viscous fluids they derived a Kelvin
Helmholtz-Darcy equation and found the threshold for ins
bility was governed by inertial effects, while the wave velo
ity was governed by Darcy’s law flow of viscous fluid
Their experimental results supported their theoretical an
sis.

As was the case for frontal flow of nonmagnetic fluids
Hele-Shaw cells, many research groups have studied
frontal interface behavior when one of the fluids is a ferr
luid @6#, and an external magnetic field is applied@6–10#.
Ferrofluids, which are colloidal suspensions of microsco
permanent magnets, respond paramagnetically to app
fields. As a result of the ferrofluid interaction with the exte
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nal field, the usual frontal displacement, viscous finger
instability is supplemented by a magnetic fluid instability@6#,
resulting in a variety of new interfacial behaviors. Dependi
on the applied field direction, one observes highly branch
labyrinthine structures@7,8#, patterns showing an ordere
line of peaks@9#, or even the supression of the usual visco
fingering instability @10#. Rosensweig@6# discusses the
Kelvin-Helmholtz instability for unconfined ferrofluids.

In this paper we perform the linear stability analysis f
parallel flow in which one fluid is a ferrofluid and a magne
field is applied. We consider three separate field configu
tions: ~a! tangential, for in-plane fields tangent to the unpe
turbed interface;~b! normal, for in-plane applied fields nor-
mal to the unperturbed interface;~c! perpendicular, when the
field is perpendicular to the plane defined by the Hele-Sh
cell plates. We show the magnetic field provides additio
mechanisms for destabilizing the interface, and we anal
qualitatively the interactions between solitons caused by
magnetic field. We neglect inertial terms because they
not needed to understand the interfacial instability.

Let us briefly describe the physical system of intere
Consider two semi-infinite immiscible viscous fluids, flow
ing with velocitiesU1 and U2, along thex direction, in a
Hele-Shaw cell of thicknessb ~see Fig. 1!. We assume thatb
is smaller than any other length scale in the problem, a
therefore the system is considered to be effectively tw

FIG. 1. Schematic configuration of the parallel flow geometry
2114 ©2000 The American Physical Society
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PRE 61 2115BRIEF REPORTS
dimensional. Denote the densities and viscosities of
lower and upper fluids, respectively asr1,h1 andr2,h2. To
achieve steady-state parallel flow the velocities and visc
ties must obey the conditionh1U15h2U2. According to
Gondret and Rabaud@5#, we may neglect inertial terms rela
tive to viscous terms providedkb!12/Re, wherek is a typi-
cal wave vector and Re5rUb/h is a characteristic Rey
nold’s number.

Between the two fluids there exists a surface tensions.
We assume that the lower fluid is the ferrofluid~magnetiza-
tion MW ), while the upper fluid is nonmagnetic. In order
include the acceleration of gravitygW , we tilt the cell so that
the y axis lies at angleb from the vertical direction. To
include magnetic forces, we apply a uniform magnetic fi
HW 0, which may point along thex, y, or z axis. During the
flow, the fluid-fluid interface has a perturbed shape descri
asy5z(x,t) ~solid curve in Fig. 1!.

Hydrodynamics of ferrofluids departs from the usu
Navier-Stokes equations through the inclusion of a term r
resenting magnetic force. LetMW represent the local magne
tization of the ferrofluid, and note that the force onMW de-
pends on the gradient of the local magnetic fieldHW . The local
field differs from the applied fieldHW 0 by the demagnetizing
field of the polarized ferrofluid. We will assumeMW takes a
constant value parallel to the applied field. This amounts
neglecting the demagnetizing field relative to the appl
field and can be justified for low magnetic susceptibility
the ferrofluid, or for large applied fields that saturate t
ferrofluid magnetization. It can also be justified for very th
ferrofluid films when the field is parallel to the plane of th
cell.

For the quasi-two-dimensional geometry of a Hele-Sh
cell, the three-dimensional flow may be replaced with
equivalent two-dimensional flowvW (x,y) by averaging over
the z direction perpendicular to the plane of the Hele-Sh
cell. Imposing no-slip boundary conditions and a parabo
velocity profile one derives Darcy’s law for ferrofluids in
Hele-Shaw cell@11,12#,

hvW 52
b2

12H ¹W p2
1

bE2b/2

1b/2

~MW •¹W !HW dz2r~gW • ŷ!ŷJ , ~1!

where p is the hydrodynamic pressure. Equation~1! de-
scribes nonmagnetic fluids by simply dropping the terms
volving magnetization.

When the velocity fieldvW is irrotational, it is convenient
to rewrite Eq.~1! in terms of velocity potentials. We write

vW 52¹W f, wheref defines the velocity potential. Likewis
we introduce the scalar magnetic potential

w5E
S

MW •nW 8

urW2rW8u
d2r 8, ~2!

where HW 52¹W w. Here the unprimed coordinatesrW denote
arbitrary points in space. The primed coordinatesrW8 are in-
tegration variables within the magnetic domainS, andd2r 8
e
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denotes the infinitesimal area element. The vectornW 8 repre-
sents the unit normal to the magnetic domain in consid
ation.

To study the interface dynamics, we evaluate Eq.~1! for
each of the fluids on the interface, subtract the result
equations from each other, and divide by the sum of the
fluids’ viscosities to get the equation of motion

AS f21f1

2 D1S f22f1

2 D5
b2

12~h11h2!

3H sk1
1

bE2b/2

1b/2

~MW •¹W w!dz

1~r22r1!g cosbyJ . ~3!

To obtain Eq.~3! we have used the pressure boundary c
dition p22p15sk at the interface, wherek5(]2z/]x2)@1
1(]z/]x)2#23/2 denotes the interfacial curvature in the pla
of the Hele-Shaw cell. The dimensionless parameterA
5(h22h1)/(h21h1) is the viscosity contrast.

We perturb the interface with a single Fourier mode

z~x,t !5zk exp@ i ~vt2kx!#. ~4!

The velocity potential for fluidi ,f i , must contain the uni-
form unperturbed flowUi and a perturbed part that reflec
the space and time dependence ofz, obeys Laplace’s equa
tion ¹2f i50 and vanishes asy→6`. The velocity poten-
tials obeying these requirements are

f i5f ik exp~6ukuy!exp@ i ~vt2kx!#2Uix. ~5!

To conclude our derivation and close Eq.~3! we need
additional relations expressing the velocity potentials
terms of the perturbation amplitudes. To find these, we c
sidered the kinematic boundary condition, which states t
the normal components of each fluid’s velocity at the int
face equals the normal velocity of the interface itself@6,8#.
Inserting expression~4! for z(x,t) and Eq.~5! for f1 into the
kinematic boundary condition, we solved forf ik(t) consis-
tently to first order inz to find

f1k52
ivzk

uku
1 i

k

uku
U1zk , ~6!

and a similar expression forf2k .
Substitute expression~6! for f1k and the related expres

sion for f2k into the equation of motion~3!, and again keep
only linear terms in the perturbation amplitude. This proc
dure eliminates the velocity potentials from Eq.~3!, and we
obtain the dispersion relation for growth of the perturbati
z(x,t),

v5kS h1U11h2U2

h11h2
D2

i ukus
12~h11h2!

@NBI j~k!2~kb!2

2~k0b!2# ~7!

where NB52M2b/s is the magnetic bond number andk0

5A@(r12r2)g cosb#/s.
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The real part ofv is k times the phase velocity and is th
viscosity-weighted average of the two fluid velocities. No
that the magnetic field does not alter the phase velocity of
waves. The imaginary part ofv, which governs the exponen
tial growth or decay of the wave amplitude, does inclu
effects of the magnetic field. Exponential~unstable! growth
occurs when the imaginary part ofv is negative. We point
out that when there is no applied magnetic field (NB50) our
Eq. ~7! agrees with the dispersion relation derived by Go
dret and Rabaud@5# for the case in which the cell is vertica
(b50) and by Zeybek and Yortsos@3,4# for the case in
which the cell is horizontal (b5p/2).

Terms containingI j (k) originate from the Fourier trans
forms of

M2I j~x![
1

bE2b/2

1b/2

M j

]w

]r j
dz, ~8!

the magnetic contribution to Eq.~3!. The subscript j
5x,y,z indicates the tangential, normal, and perpendicu
magnetic field configurations, respectively. ForMW in thex or
y direction we can expand Eq.~8! to first order inz to obtain

I x~x!5E
2`

`

dx8~x2x8!F2
]z~x8!

]x8
G F̄~x2x8! ~9!

and

I y~x!5E
2`

`

dx8@z~x!2z~x8!#F̄~x2x8!, ~10!

where

F̄~x![
1

bE2b/2

1b/2E
2b/2

1b/2 dzdz8

@x21~z2z8!2#3/2

5
2

bx2 @Ab21x22uxu#. ~11!

In contrast, forI z(x) the z integration inverts the derivative
of w with respect toz in Eq. ~8! so that after integrating ove
y8 and expanding to first order in powers ofz, this term
simplifies to

I z~x!5E
2`

`

dx8
2

bF 1

A~x2x8!2
2

1

A~x2x8!21b2G
3@z~x8!2z~x!#. ~12!

We obtain the specific forms forI j (k) corresponding to
each particular field configuration by taking the Four
transform of Eqs.~9!, ~10!, and~12!. After some simple al-
gebra we find the following expressions for the magne
termsI j (k):

I x~k!522E
0

`S sint

t D @A~kb!21t22t#dt, ~13!

I y~k!54 E
0

`S sint

t D 2

@A~kb/2!21t22t#dt, ~14!
e

e

-

r

r

c

and

I z~k!54E
0

`

sin2tF1

t
2

1

A~kb/2!21t2Gdt. ~15!

In the limits of small and large wave vectors these Four
transforms reduce to

I x~k!'H 2@~3/22C1 ln 2!2 ln kb#~kb!2, kb!1

2pkb, kb@1,
~16!

I y~k!'H @~22C1 ln 2!2 ln kb#~kb!2/2, kb!1

pkb, kb@1,
~17!

I z~k!'H @~12C1 ln 2!2 ln kb#~kb!2/2, kb!1

ln~kb/2!, kb@1,
~18!

where C'0.577 21 denotes Euler’s constant@13#. Our re-
sults Eqs.~13!, ~14!, and ~15!, agree with similar kinds of
calculations related tofrontal displacements in a Hele-Sha
cell with ferrofluids@7–10#.

The dispersion relation~7! is given for the case of system
with infinite extent along they axis. For finite extentL the
algebraic dependence on wave vectork is modified by a first-
order rational function of sinhkL as shown by Zeybek and
Yortsos @3,4#. When kL is large this finite size correction
dies off exponentially quickly. The magnetic integralsI j (k)
likewise possess exponentially small finite size correction

Consider the stability of the fluid-fluid interface for th
different field configurations. The initially flat interface i
unstable to perturbations with wave numberk when
NBI j (k)2(kb)22(k0b)2 is positive. If the heavier fluid is
below the lighter fluid (r1.r2), then both gravity and sur
face tension stabilize the system andk0 is real. Therefore, in
the absence of applied magnetic field (NB50), the temporal
growth rate of any perturbation is negative and waves
damped. On the other hand, if the external magnetic fiel
nonzero, the stability of the interface will depend on t
field’s direction. Figure 2 illustrates how the magnetic term
~13!, ~14!, and ~15! vary with reduced wave numberkb.
Inspecting Fig. 2 and the imaginary part of the dispers
relation ~7! we note that a tangent field configuratio
@ I x(k),0#, makes the growth rate even more negative th
when the field is absent. So a tangent external field ha
stabilizing nature, reinforcing the effects of gravity and su
face tension. In contrast, sinceI y(k) andI z(k) are both posi-
tive quantities, if a sufficiently strong magnetic field is a

FIG. 2. Variation ofI j (k) as a function ofkb for ~a! tangential,
~b! normal, and~c! perpendicular magnetic field configurations.
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plied normal to the fluid-fluid interface, or perpendicular
the cell plates, the growth rate may become positive, lead
to a possible destabilization of the interface. We conclu
that the magnetic field can destabilize the interface eve
the absence of inertial effects.

In addition to the interface stability issue discussed abo
it is interesting to ask how the magnetic field acts on
motion of interfacial waves once they appear. In the follo
ing, we discuss the action of the applied magnetic field
the solitons that appear in parallel flow in Hele-Shaw ce
To treat the problem rigorously would require reproduci
the analysis of Zeybek and Yortsos@3,4# that derived Airy
and KdV equations from a weakly nonlinear analysis of
interfacial perturbations. Here we simply point out that t
solitons may be considered as localized perturbations on
flat interface. When magnetic fields are present the solit
acquire net dipole moments equal to the magnetization of
fluid multiplied by the integrated area of the soliton.

Take the generic form of a KdV soliton,

u~x,t !52
c

2
sechSAc

2
~x2ct! D , ~19!

written here in terms of the scaled time, position and hei
variables discussed in@4#, wherec is the speed of propoga
tion. We define the scaled dipole moment of the soliton
speedc as

m~c!5E
2`

`

MW u~x,t !dx52AcpMW . ~20!

In doing so, we neglect the magnetic field dependence of
shape of the soliton. We may consider the magnetic mom
~20! as the leading, linear term in a perturbative series
powers of the applied field, and expect a cubic correction
to the field-dependent soliton shape. As noted in@4#, the
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actual profile in unscaled coordinates may be either posi
or negative, and the dipole moment given here must be
vided by the position and height rescaling factors to yield
true moment. True dipole momentsm point parallel to the

magnetizationMW when the soliton consists of excess ma

netic fluid, and point opposite toMW when the soliton consists
of missing magnetic fluid.

Dipole interactions are long ranged, falling off as 1/x3 for
moments separated by a distancex. This contrasts with the
fluid-dynamic interaction of solitons that decays expone
tially with separation. An interesting additional feature of t
dipole-dipole interaction is its variation with the relative or
entation of dipole moments and the vector joining them.

the case of solitons with parallel momentsmW 1 and mW 2 dis-
placed from each other along thex axis, the interactions will
be attracting, with strength 2m1m2, when the magnetization
lie along thex axis ~tangential! but will be repelling, with
strengthm1m2 when the magnetizations lie along they ~nor-
mal! or z ~perpendicular! axes.

In conclusion, we have performed the linear stabil
analysis for parallel flow in a Hele-Shaw cell when one
the fluids is a ferrofluid. We show that the magnetic fie
may provide a new mechanism for destabilizing the interfa
in the absence of inertial effects, and we determine the m
netic correction to the dispersion relations for three disti
field orientations. Finally, we suggest parallel flow of ferro
luids as a novel system in which to investigate soliton int
actions.
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